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Functions

A function takes one element from a set, and associates it with an element of another
set.

Definition
f is a function from A to B, if it links each element from A to a single element from B.
The set A is called the domain of f, and the set B is called the codomain of f.

The notation for a function is f : A— B, and if y = f(x) we say that (x,y) € f.

P. Fagandini



Functions

Let f : A— B be a function.
m Let a € A, then f(a) is called the image of a under f.

m Let C C A, then f(C) := {f(c)|c € C} is called the Image of C, Im(C).
m 7(A) C B, the image of A is called the range of f.

m Let D C f(A), the set {x € A|f(x) € D} is called the preimage of D.
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Functions

Definition
Consider a function f : R” — R, the Graph of f, Gr(f) is defined as:

Gr(f) :={(x,y) e R" x Rly = f(x)}

P. Fagandini



Functions

Definition
Consider a function f : R” — R, the Graph of f, Gr(f) is defined as:

Gr(f) :={(x,y) e R" x Rly = f(x)}

Note: More generally neither the domain needs to be R" nor the codomain needs to
be R, the case given above is just the most common situation in economics.
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Functions

Definition
Consider f : R >R and g: R — R,
1. Sum: (f+g): R =R, and (f + g)(x) = f(x) + g(x).
2. Product: (f-g): R — R, and (f - g)(x) = f(x)g(x)
3. Division: (f/g) :R — R, and (f/g)(x) = g(—xg. This is only well defined when
g(x) #0.
4. Scaling: If a € R, (af) : R — R, and (af)(x) = af(x)

NOVA.

P. Fagandini




Functions

Definition

Consider the functions f : B — C, and g : A — B, then the composite function
fog:A— Cis defined as

(fog)(x) = f(g(x))
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Functions

Definition

Consider sets A and B, and the function f : A — B.
1. f is injective if, for a and a’ in A, such that a # a’, then f(a) # f(a).
2. f is surjective if, for any b € B, exists a € A such that f(a) = b.

3. f is bijective if it is both, injective and surjective at the same time.
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Quick Quiz - 5 Minutes

Classify the following functions

Function ‘ Classification

f:R— R, f(x)=x?
f:R— [-1,1],f(x) = sin(x)
f:R— R, f(x)=x3
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Quick Quiz - 5 Minutes

Classify the following functions

Function ‘ Classification

f:R— R, f(x)=x? -
f:R— [—1,1],f(x) =sin(x) | Surjective
f:R— R, f(x)=x3
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Quick Quiz - 5 Minutes

Classify the following functions

Function ‘ Classification
f:R— R, f(x)=x? -
f:R— [—1,1],f(x) =sin(x) | Surjective
f:R—R,f(x)=x3 Bijective
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Functions

Proposition

If f : A— B is a bijective function, then there exists a unique function g : B — A,
bijective, such that

g(f(x)) = x

g is called the inverse of f, also known as f~1.

Proposition
Let f: B— C, and g : A — B be both invertible functions, then f o g is invertible.
Moreover,
(f og;)f1 = gi1 of !
NOVA.
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Functions

Proof.

Existence:
m Let g = {(b,a)|(a,b) € f}.
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Functions

Proof.
Existence:
m Let g = {(b,a)|(a,b) € f}.

m If (b,a1),(b,a2) € g, then (a1, b), (a2, b) € f, but f is injective, so a; = az. Then
g is a function.

P. Fagandini



Functions

Proof.
Existence:
m Let g = {(b,a)|(a,b) € f}.
m If (b,a1),(b,a2) € g, then (a1, b), (a2, b) € f, but f is injective, so a; = az. Then
g is a function.
m The domain of g is {b|(b,a) € g} = {b|(a, b) € f} = f(X).
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Functions

Proof.

Existence:
m Let g = {(b,a)|(a,b) € f}.
m If (b,a1),(b,a2) € g, then (a1, b), (a2, b) € f, but f is injective, so a; = az. Then
g is a function.
m The domain of g is {b|(b,a) € g} = {b|(a, b) € f} = f(X).
m Let (b,a2) € g and (a1, b) € f. Then (az, b) € f, and given f injective, we have
ay =ay. Then gof ={(a,a)|lac A} = [d.
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Functions

Proof.
Existence:
m Let g = {(b,a)|(a,b) € f}.
m If (b,a1),(b,a2) € g, then (a1, b), (a2, b) € f, but f is injective, so a; = az. Then
g is a function.

m The domain of g is {b|(b,a) € g} = {b|(a, b) € f} = f(X).
m Let (b,a2) € g and (a1, b) € f. Then (az, b) € f, and given f injective, we have
ay =ay. Then gof ={(a,a)|lac A} = [d.

mletfl=g

Homework, show that g is bijective. Hint: Go with contradiction. O

NOVA.
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Functions

Unicity,
m Let g and h be inverse of f.
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Functions

Unicity,
m Let g and h be inverse of f.
m Assume g(b) # h(b), at least for some b € B.
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Functions

Unicity,
m Let g and h be inverse of f.
m Assume g(b) # h(b), at least for some b € B.
m As b € B, then there is a such that f(a) = b.
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Functions

Unicity,
m Let g and h be inverse of f.

m Assume g(b) # h(b), at least for some b € B.

m As b € B, then there is a such that f(a) = b.
m So g(b) # h(b), but g(f(a)) # h(f(a)).
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Functions

Unicity,
m Let g and h be inverse of f.

As b € B, then there is a such that f(a) = b.

So g(b) # h(b), but g(f(a)) # h(f(a)).
But gof and ho f are both the identity so...

Assume g(b) # h(b), at least for some b € B.
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Functions

Unicity,

m Let g and h be inverse of f.
Assume g(b) # h(b), at least for some b € B.
m As b € B, then there is a such that f(a) = b.
So g(b) # h(b), but g(f(a)) # h(f(a)).
m But gof and ho f are both the identity so...
m g(f(a)) = a+# a= h(f(a)), contradiction!

So the inverse must be unique.

NOVA.
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Composite Invertible
Proof.

m(gof)o(ftogl)=gofoftog
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Composite Invertible
Proof.

m(gof)o(ftogl)=gofoftog
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mgofoflogl=goldog™.
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mgofoflogl=goldog™
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Composite Invertible
Proof.

m(gof)o(ftogl)=gofoftog

mgofoflogl=goldog™
1

mgoldogl=gogt=1d.

Trivial to show that (f "1 og™!)o(gof) = Id. as well, using the same steps.
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Functions

Definition
Consider f : R” — R and y in the codomain.

1. The level curve of f at y is:

Cy = {(x,y) € R™|f(x) = y}

2. The isoquant curve of f at y is:

ly = {x e R"|f(x) = y}
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Functions

Definition
Consider the function f : R — R, and any pair x and y in R such that x < y, we say
that
1. f is increasing if f(x) < f(y).
2. f is decreasing if f(x) > f(y).
If the inequalities are strict, then you add the word strictly to increasing or decreasing.

A non decreasing function is also known as monotonically increasing. Conversely, a
non increasing function is also known as monotonically decreasing.
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Functions

Definition
Consider the function f : R” — R, and any pair x and y in R” such that y; = x; for
every i=1,.,j—1,j41,..,n, and y; = x; + €, with € > 0 we say that

1. f is increasing in the component j if

f(X1- s Xy ooy Xn) < (X1, .00, X+ 6,000, Xn)

If the inequalities are strict, then you add the word strictly to increasing or decreasing.
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